Realizzazione di circuiti “Manhattan style”

Oggi voglio condividere una tecnica di costruzione di prototipi di circuito elettronico chiamata “Manhattan style”.

Mi ha colpito perché riesce ad unire la semplicità di realizzazione (un circuito è fattibile con pochissimi mezzi) alla possibilità di realizzare circuiti che lavorano in alta frequenza / radiofrequenza, o circuiti a larga banda, quindi ad esempio applicazioni radio, fino alle VHF e oltre. Inoltre, per costruzione, un circuito così realizzato ha piste di lunghezza minima, permettendo l’erogazione di una discreta potenza.

In rete c’è una certa quantità di documentazione in merito.

Segnalo subito gli ottimi articoli di Chuck Adams K7QO:

e il video che forse per primo mi ha avvicinato a questa tecnica, di W2AEW: #122: Electronic Circuit Construction Techniques: review of some prototype circuit building methods, che passa in rassegna vari metodi di costruzione di prototipi.

Se capite l’inglese, potete tranquillamente saltare il resto di questo articolo e navigare partendo dai link sopra.

Il “Manhattan style”.

Concettualmente è molto semplice. Si parte da una basetta per circuiti stampati vergine a faccia singola e da dei frammenti di basetta a faccia singola di area piccola che chiamiamo “zolle”, ottenuti ad esempio con una roditrice, una tenaglia o una tagliatrice.

Dato lo schema elettrico, ciascun nodo della rete elettrica corrisponde ad una “zolla”. Supponiamo di voler fare un partitore resistivo, come illustrato qui:

 

Partitore resistivo con i nodi evidenziati e cerchiati in rosso.

Come si vede, si identifica con una lettera ciascun nodo della rete elettrica, che corrisponderà ad una zolla Manhattan. Da qui alla realizzazione non serve usare alcun CAD, bastano solo il cervello e un po’ di buona volontà.

La basetta e le zolle tagliate con una tenaglia da lamiera.

Posizionare le zolle nella basetta e incollarle secondo la logica dello schema elettrico. Nei riferimenti si dice di usare una “super glue”, io preferisco la colla a caldo perché con il semplice posizionamento del saldatore si fonde nuovamente e diventa riposizionabile. Il raffreddamento è immediato grazie al rame.

 

Mettere una goccia di colla fusa sulla zolla e attaccarla alla basetta.

 

Basetta con le zolle incollate. La superficie di base sarà per noi un ottimo piano di massa!

 

Ora, procediamo con la saldatura delle nostre resistenze di partitore. Il saldatore dovrà avere una discreta riserva di potenza, credo che 40W siano sufficienti nella gran parte dei casi. Sagomiamo le resistenze nel seguente modo:

 

…e procediamo con la saldatura. Si inizia stagnando la zolla e successivamente i componenti:

 

 

Schema elettrico implementato, corredato di scritte a penna indelebile. Il layout dei componenti riflette fedelmente lo schema elettrico ed è facile da interpretare e seguire!

Nello spazio libero disponibile sul piano di massa si possono aggiungere, con una penna indelebile, informazioni utili come ad esempio la lettera della zolla, il numero di componente, note, ecc…

In presenza di circuiti integrati?

Nel caso di circuiti integrati si possono sagomare zolle più complesse, aiutandosi con appositi strumenti da taglio.

Ad esempio è facile realizzare una zolla per ospitare uno zoccolo per IC con pedinatura DIP:

Base per socket DIP8 realizzata tagliando lo spezzone di basetta con un trapano ad alta velocità Proxxon.

Una simile zolla va sempre incollata sulla basetta ospitante, mentre si possono saldare i collegamenti ai pin dell’integrato nelle “isole” di rame scavate su di essa, come si vede nella foto. Con un trapano ad alta velocità e un minidisco da taglio per metalli si ottiene facilmente questo risultato, asportando solo lo strato di rame della basetta. La distanza tra le “isole” visibile in foto è certamente sufficiente per operare con tensioni fino all’ordine dei 100V.

Una tecnica alternativa per gli IC: la “Dead Bug Technique”, ovvero la tecnica dello scarafaggio morto.

Potrebbe risultare difficoltoso ricavare una zolla per il montaggio di uno zoccolo per IC. In questo caso, possiamo sempre ricorrere ad un metodo ancora più semplice, che va sotto il nome di “dead bug technique”.

Come suggerisce il nome, si tratta di posizionare e incollare il chip “capovolto”, sulla basetta, ricordandosi che la pedinatura ora risulterà specularmente invertita!

Il risultato non è elegante da vedere ma funziona, ed è duro da battere se c’è bisogno di sfruttare al massimo la banda passante del componente.

Il difetto maggiore della tecnica “Dead bug” che ho riscontrato è la relativa debolezza dei pin dell’integrato, per cui bisogna stare molto attenti quando si opera su di essi. Non è facile saldare componenti direttamente sui piedini, ma con l’esperienza il problema scompare. Un altro difetto è la scarsa manutenibilità della parte di circuito così realizzata. La zolla con il socket è un’alternativa decisamente migliore da questo punto di vista.

 

Vantaggi dell’approccio Manhattan.

L’approccio è molto semplice e diretto, e ha l’enorme pregio di mantenere facile lo sbroglio del circuito e vicini i componenti tra loro.

Inoltre, se non si devono gestire frequenze altissime (VHF), è possibile disporre i componenti discreti lasciando ampio spazio per applicare la sonda di un oscilloscopio ed avere anche un circuito facilissimo da debuggare.

Ultimo ma non ultimo, no necessità di CAD o altri sistemi, no sostanze chimiche, nulla: solo una basetta e degli utensili da taglio.

 

73 de IU3JSX Marco